Thursday, 4 February 2021

Rooks Lightoj 1005

 In this problem if number of rooks(k) is greater than the number of rows(n) then the answer is 0. Because we can't put k rooks in n safe position if there has any row and col is common for any rooks.

To doing dp we will check if you put a rook in specific row and col what will happen? and then if we don't take it what will happen. so,

states: current row, current col, number of rooks left.

Transition: Will put and won't put on this scope.

We can solve this problem with recursive manner hence constraint doesn't have to solve with Memoization. 

Codes:

/// Bismillahir Rahmanir Rahim
/* Mohammad Morsalin
   Dept of ICE, NSTU
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
#define mp make_pair
#define f0(n) for(int i=0;i<n;i++)
#define ms(x) memset(x,0,sizeof(x))
#define CLR(x) memset(x, -1, sizeof(x))
#define uniq(vec) vec.resize(distance(vec.begin(),unique(vec.begin(),vec.end())))
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define pi pair<int,int>
#define rep(i,a) for(int i=0; i<a;i++)
#define rep1(i,a,b) for(int i=(a);i<=(b);++i)
#define irep(i,b,a) for(int i=(b);i>=(a);--i)
#define bits(n) __builtin_popcount(n)
#define maxpq priority_queue<int>
#define minpq priority_queue<int, vector<int>, greater<int> >
#define ins insert
#define ALL(v) v.begin(),v.end()
#define highest(x) numeric_limits<x>::max()
#define lowest(x) numeric_limits<x>::min()
#define Inf INFINITY
#define minv(v) *min_element(v.begin(),v.end())
#define maxv(v) *max_element(v.begin(),v.end())
#define fi first
#define se second
#define PI acos(-1)
#define sz(a) (int)a.size();
#define IOS ios::sync_with_stdio(false);

///for debug
vector<string> vec_splitter(string s) {    s += ',';vector<string> res;while(!s.empty()) {res.push_back(s.substr(0, s.find(',')));s = s.substr(s.find(',') + 1);}return res;}
void debug_out( vector<string> __attribute__ ((unused)) args,__attribute__ ((unused)) int idx,__attribute__ ((unused)) int LINE_NUM) { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(vector<string> args, int idx, int LINE_NUM, Head H, Tail... T) { if(idx > 0) cerr << ", "; else cerr << "Line(" << LINE_NUM << ") ";stringstream ss; ss << H;cerr << args[idx] << " = " << ss.str();debug_out(args, idx + 1, LINE_NUM, T...);}
#define XOX
#ifdef XOX
#define debug(...) debug_out(vec_splitter(#__VA_ARGS__), 0, __LINE__, __VA_ARGS__)
#else
#define debug(...) 42
#endif
///debug template ends


int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a);}
int lcm(int a,int b) {return (a*b)/gcd(a,b);}
int dx8[] = {0, 0, 1, 1, 1, -1, -1, -1};
int dy8[] = {1,-1, 1, -1, 0, 0, -1, 1};
int dx4[] = {0, 0, 1, -1};
int dy4[] = {1, -1, 0, 0};
const long long MOD = 1000000007;
double sq(double x) {return x*x;}
typedef vector<int> vi;
typedef vector<pair<int,int>> vpii;
template<typename T>inline T Bigmod(T base, T power, T MOD){
    T ret=1;
    while(power)
    {
        if(power & 1)ret=(ret*base)%MOD;
        base=(base*base)%MOD;
        power>>=1;
    }
    return ret;
}
///modular arithmetic
inline void normal(ll &a) { a %= MOD; (a < 0) && (a += MOD); }
inline ll modMul(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); return (a*b)%MOD; }
inline ll modAdd(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); return (a+b)%MOD; }
inline ll modSub(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); a -= b; normal(a); return a; }
inline ll modPow(ll b, ll p) { ll r = 1; while(p) { if(p&1) r = modMul(r, b); b = modMul(b, b); p >>= 1; } return r; }
inline ll modInverse(ll a) { return modPow(a, MOD-2); }  /// When MOD is prime.
inline ll modDiv(ll a, ll b) { return modMul(a, modInverse(b)); }
///modular arithmetic template ends

bool sortinrev(const pair<int,int> &a,
               const pair<int,int> &b)
{
       return (a.first > b.first);
}
int tc=0;
///solution
ll cur(ll n,ll m, ll k){
    if(k>n || k>m)return 0;
    if(k==0)return 1;
    if(m==1)return n;
    return n*cur(n-1,m-1,k-1)+cur(n,m-1,k);
}
void solution(){
    ll n,k;
    cin>>n>>k;
    cout << "Case "<<++tc<< ": "<< cur(n,n,k)<< endl;
}
signed main()
{
    IOS
    #ifndef ONLINE_JUDGE
        freopen ("input.txt","r",stdin);
        freopen ("output.txt","w",stdout);
    #endif
    int t;
    t=1;
    cin>>t;
    while(t--){
        solution();
    }
    return 0;
}
///Alhamdulillah


No comments:

Post a Comment

If you have any doubts, let me know through comments

Monkey Banana Problem lightoj 1004

  In this problem we will check which adjacent cell will benefits the monkey best. For this, we will check all possible solution of this pro...