we will check which value is most satisfied in the given number of nights k. For this purpose we will do binary search from highest distance of two campsites to sum of distance.
/// Bismillahir Rahmanir Rahim
/* Mohammad Morsalin
Dept of ICE, NSTU
*/
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
#define ll long long
#define pb push_back
#define mp make_pair
//#define endl "\n"
#define int long long
#define f0(n) for(int i=0;i<n;i++)
#define ms(x) memset(x,0,sizeof(x))
#define ms2d(x,m,n) memset(x, 0, sizeof(x[0][0]) * m * n)
#define uniq(vec) vec.resize(distance(vec.begin(),unique(vec.begin(),vec.end())))
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define pi pair<int,int>
#define tc(t) int t;scanf("%lld",&t);while(t--)
#define bits(n) __builtin_popcount(n)
#define maxpq priority_queue<int>
#define minpq priority_queue<int, vector<int>, greater<int> >
#define ins insert
#define ALL(v) v.begin(),v.end()
#define highest(x) numeric_limits<x>::max()
#define lowest(x) numeric_limits<x>::min()
#define Inf INFINITY
#define minv(v) *min_element(v.begin(),v.end())
#define maxv(v) *max_element(v.begin(),v.end())
#define fi first
#define se second
#define PI acos(-1)
#define sz(a) (int)a.size();
#define IOS ios::sync_with_stdio(false);
using namespace std;
int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a);}
typedef tree<pair<int, int>,null_type,less<pair<int, int>>,rb_tree_tag,tree_order_statistics_node_update> ordered_multiset;
int dx8[] = {0, 0, 1, 1, 1, -1, -1, -1};
int dy8[] = {1,-1, 1, -1, 0, 0, -1, 1};
int dx4[] = {0, 0, 1, -1};
int dy4[] = {1, -1, 0, 0};
const long long MOD = 1000000007;
double sq(double x) {return x*x;}
template<typename T>inline T Bigmod(T base, T power, T MOD){
T ret=1;
while(power)
{
if(power & 1)ret=(ret*base)%MOD;
base=(base*base)%MOD;
power>>=1;
}
return ret;
}
bool sortinrev(const pair<int,int> &a,
const pair<int,int> &b)
{
return (a.first > b.first);
}
signed main()
{
IOS
int tn=0;
tc(t){
int n,k;
scanf("%lld%lld",&n,&k);
int arr[n+1];
int sum=0,max_val=0;
f0(n+1){
scanf("%lld",&arr[i]);
sum+=arr[i];
max_val=max(max_val,arr[i]);
//cout << arr[i]<< endl;
}
int low=max_val;
int high=sum;
int mid;
int ans=high;
while(low<=high){
mid=(low+high)/2;
int time=0,pre=0;
// cout << mid;
for(int i=0;i<n+1;i++){
pre+=arr[i];
if(pre>mid){
time++;
pre=arr[i];
}
}
// cout << " "<< time << endl;
if(time<=k){
high=mid-1;
ans=mid;
}
else{
low=mid+1;
}
}
printf("Case %lld: %lld\n",++tn,ans);
int pre=0;
int nt=0;
for(int i=0;i<n+1;i++){
if(pre+arr[i]>ans){
printf("%lld\n",pre);
pre=0;
i--;
nt++;
}
else if(pre+arr[i]==ans){
printf("%lld\n",pre+arr[i]);
pre=0;
nt++;
}
else if(k-nt==(n-i)){
printf("%lld\n",pre+arr[i]);
pre=0;
nt++;
}
else pre+=arr[i];
}
}
return 0;
}
///Alhamdulillah
No comments:
Post a Comment
If you have any doubts, let me know through comments