Friday, 5 February 2021

All Possible Increasing Subsequences Lightoj 1085

First of all we will sort all A by non decreasing order and then we can find how many subsequence we can have by building a Binary indexed tree in the base of respective index.

To learn Binary indexed tree : BIT

/// Bismillahir Rahmanir Rahim
/* Mohammad Morsalin
   Dept of ICE, NSTU
*/
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
#define ll long long
#define pb push_back
#define mp make_pair
#define endl "\n"
#define int long long
#define f0(n) for(int i=0;i<n;i++)
#define ms(x) memset(x,0,sizeof(x))
#define ms2d(x,m,n) memset(x, 0, sizeof(x[0][0]) * m * n)
#define CLR(x) memset(x, -1, sizeof(x))
#define CLR2d(x,m,n) memset(x, -1, sizeof(x[0][0]) * m * n)
#define uniq(vec) vec.resize(distance(vec.begin(),unique(vec.begin(),vec.end())))
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define pi pair<int,int>
#define rep(i,a) for(int i=0; i<a;i++)
#define rep1(i,a,b) for(int i=(a);i<=(b);++i)
#define irep(i,b,a) for(int i=(b);i>=(a);--i)
#define bits(n) __builtin_popcount(n)
#define maxpq priority_queue<int>
#define minpq priority_queue<int, vector<int>, greater<int> >
#define ins insert
#define ALL(v) v.begin(),v.end()
#define highest(x) numeric_limits<x>::max()
#define lowest(x) numeric_limits<x>::min()
#define Inf INFINITY
#define minv(v) *min_element(v.begin(),v.end())
#define maxv(v) *max_element(v.begin(),v.end())
#define fi first
#define se second
#define PI acos(-1)
#define sz(a) (int)a.size();
#define IOS ios::sync_with_stdio(false);

///for debug
vector<string> vec_splitter(string s) {    s += ',';vector<string> res;while(!s.empty()) {res.push_back(s.substr(0, s.find(',')));s = s.substr(s.find(',') + 1);}return res;}
void debug_out( vector<string> __attribute__ ((unused)) args,__attribute__ ((unused)) int idx,__attribute__ ((unused)) int LINE_NUM) { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(vector<string> args, int idx, int LINE_NUM, Head H, Tail... T) { if(idx > 0) cerr << ", "; else cerr << "Line(" << LINE_NUM << ") ";stringstream ss; ss << H;cerr << args[idx] << " = " << ss.str();debug_out(args, idx + 1, LINE_NUM, T...);}
#define XOX
#ifdef XOX
#define debug(...) debug_out(vec_splitter(#__VA_ARGS__), 0, __LINE__, __VA_ARGS__)
#else
#define debug(...) 42
#endif
///debug template ends


int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a);}
typedef tree<pair<int, int>,null_type,less<pair<int, int>>,rb_tree_tag,tree_order_statistics_node_update> ordered_multiset;
int dx8[] = {0, 0, 1, 1, 1, -1, -1, -1};
int dy8[] = {1,-1, 1, -1, 0, 0, -1, 1};
int dx4[] = {0, 0, 1, -1};
int dy4[] = {1, -1, 0, 0};
const long long MOD = 1000000007;
double sq(double x) {return x*x;}
typedef vector<int> vi;
typedef vector<pair<int,int>> vpii;
template<typename T>inline T Bigmod(T base, T power, T MOD){
    T ret=1;
    while(power)
    {
        if(power & 1)ret=(ret*base)%MOD;
        base=(base*base)%MOD;
        power>>=1;
    }
    return ret;
}
///modular arithmetic
inline void normal(ll &a) { a %= MOD; (a < 0) && (a += MOD); }
inline ll modMul(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); return (a*b)%MOD; }
inline ll modAdd(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); return (a+b)%MOD; }
inline ll modSub(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); a -= b; normal(a); return a; }
inline ll modPow(ll b, ll p) { ll r = 1; while(p) { if(p&1) r = modMul(r, b); b = modMul(b, b); p >>= 1; } return r; }
inline ll modInverse(ll a) { return modPow(a, MOD-2); }  /// When MOD is prime.
inline ll modDiv(ll a, ll b) { return modMul(a, modInverse(b)); }
///modular arithmetic template ends

bool sortinrev(const pair<int,int> &a,
               const pair<int,int> &b)
{
        if(a.fi==b.fi)return a.se>b.se;
       return (a.first < b.first);
}
const int maxn=100005;
int BIT[maxn+5];
int n;
void update(int pos,int val){
    while(pos<=n){
        BIT[pos]+=val;
        BIT[pos]%=MOD;
        pos+=(pos& -pos);
    }
}
int query(int pos){
    int res=0;
    while(pos>0){
        res+=BIT[pos];
        res%=MOD;
        pos-=(pos & -pos);
    }
    return res;
}
///solution
int cs=0;
void solution(){
    ms(BIT);
    scanf("%lld",&n);
    vector<pair<int,int> > vp;
    for(int i=0;i<n;i++){
        int x;
        scanf("%lld",&x);
        vp.pb(mp(x,i+1));
    }
    sort(ALL(vp),sortinrev);
    for(int i=0;i<(int)vp.size();i++){
        int sum =1+query(vp[i].se-1);
        //debug(sum,vp[i].se);
        update(vp[i].se,sum);
    }
    printf("Case %lld: %lld\n",++cs,query(n));
}
signed main()
{
    IOS
    int t;
    t=1;
    //cin>>t;
    scanf("%lld",&t);
    while(t--){
        solution();
    }
    return 0;
}
///Alhamdulillah



No comments:

Post a Comment

If you have any doubts, let me know through comments

Monkey Banana Problem lightoj 1004

  In this problem we will check which adjacent cell will benefits the monkey best. For this, we will check all possible solution of this pro...