First of all we will sort all A by non decreasing order and then we can find how many subsequence we can have by building a Binary indexed tree in the base of respective index.
To learn Binary indexed tree : BIT
/// Bismillahir Rahmanir Rahim
/* Mohammad Morsalin
Dept of ICE, NSTU
*/
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
#define ll long long
#define pb push_back
#define mp make_pair
#define endl "\n"
#define int long long
#define f0(n) for(int i=0;i<n;i++)
#define ms(x) memset(x,0,sizeof(x))
#define ms2d(x,m,n) memset(x, 0, sizeof(x[0][0]) * m * n)
#define CLR(x) memset(x, -1, sizeof(x))
#define CLR2d(x,m,n) memset(x, -1, sizeof(x[0][0]) * m * n)
#define uniq(vec) vec.resize(distance(vec.begin(),unique(vec.begin(),vec.end())))
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define pi pair<int,int>
#define rep(i,a) for(int i=0; i<a;i++)
#define rep1(i,a,b) for(int i=(a);i<=(b);++i)
#define irep(i,b,a) for(int i=(b);i>=(a);--i)
#define bits(n) __builtin_popcount(n)
#define maxpq priority_queue<int>
#define minpq priority_queue<int, vector<int>, greater<int> >
#define ins insert
#define ALL(v) v.begin(),v.end()
#define highest(x) numeric_limits<x>::max()
#define lowest(x) numeric_limits<x>::min()
#define Inf INFINITY
#define minv(v) *min_element(v.begin(),v.end())
#define maxv(v) *max_element(v.begin(),v.end())
#define fi first
#define se second
#define PI acos(-1)
#define sz(a) (int)a.size();
#define IOS ios::sync_with_stdio(false);
///for debug
vector<string> vec_splitter(string s) { s += ',';vector<string> res;while(!s.empty()) {res.push_back(s.substr(0, s.find(',')));s = s.substr(s.find(',') + 1);}return res;}
void debug_out( vector<string> __attribute__ ((unused)) args,__attribute__ ((unused)) int idx,__attribute__ ((unused)) int LINE_NUM) { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(vector<string> args, int idx, int LINE_NUM, Head H, Tail... T) { if(idx > 0) cerr << ", "; else cerr << "Line(" << LINE_NUM << ") ";stringstream ss; ss << H;cerr << args[idx] << " = " << ss.str();debug_out(args, idx + 1, LINE_NUM, T...);}
#define XOX
#ifdef XOX
#define debug(...) debug_out(vec_splitter(#__VA_ARGS__), 0, __LINE__, __VA_ARGS__)
#else
#define debug(...) 42
#endif
///debug template ends
int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a);}
typedef tree<pair<int, int>,null_type,less<pair<int, int>>,rb_tree_tag,tree_order_statistics_node_update> ordered_multiset;
int dx8[] = {0, 0, 1, 1, 1, -1, -1, -1};
int dy8[] = {1,-1, 1, -1, 0, 0, -1, 1};
int dx4[] = {0, 0, 1, -1};
int dy4[] = {1, -1, 0, 0};
const long long MOD = 1000000007;
double sq(double x) {return x*x;}
typedef vector<int> vi;
typedef vector<pair<int,int>> vpii;
template<typename T>inline T Bigmod(T base, T power, T MOD){
T ret=1;
while(power)
{
if(power & 1)ret=(ret*base)%MOD;
base=(base*base)%MOD;
power>>=1;
}
return ret;
}
///modular arithmetic
inline void normal(ll &a) { a %= MOD; (a < 0) && (a += MOD); }
inline ll modMul(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); return (a*b)%MOD; }
inline ll modAdd(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); return (a+b)%MOD; }
inline ll modSub(ll a, ll b) { a %= MOD, b %= MOD; normal(a), normal(b); a -= b; normal(a); return a; }
inline ll modPow(ll b, ll p) { ll r = 1; while(p) { if(p&1) r = modMul(r, b); b = modMul(b, b); p >>= 1; } return r; }
inline ll modInverse(ll a) { return modPow(a, MOD-2); } /// When MOD is prime.
inline ll modDiv(ll a, ll b) { return modMul(a, modInverse(b)); }
///modular arithmetic template ends
bool sortinrev(const pair<int,int> &a,
const pair<int,int> &b)
{
if(a.fi==b.fi)return a.se>b.se;
return (a.first < b.first);
}
const int maxn=100005;
int BIT[maxn+5];
int n;
void update(int pos,int val){
while(pos<=n){
BIT[pos]+=val;
BIT[pos]%=MOD;
pos+=(pos& -pos);
}
}
int query(int pos){
int res=0;
while(pos>0){
res+=BIT[pos];
res%=MOD;
pos-=(pos & -pos);
}
return res;
}
///solution
int cs=0;
void solution(){
ms(BIT);
scanf("%lld",&n);
vector<pair<int,int> > vp;
for(int i=0;i<n;i++){
int x;
scanf("%lld",&x);
vp.pb(mp(x,i+1));
}
sort(ALL(vp),sortinrev);
for(int i=0;i<(int)vp.size();i++){
int sum =1+query(vp[i].se-1);
//debug(sum,vp[i].se);
update(vp[i].se,sum);
}
printf("Case %lld: %lld\n",++cs,query(n));
}
signed main()
{
IOS
int t;
t=1;
//cin>>t;
scanf("%lld",&t);
while(t--){
solution();
}
return 0;
}
///Alhamdulillah
No comments:
Post a Comment
If you have any doubts, let me know through comments